回顾上节

动力学方程

Ja1x¨+ba2x˙x˙+mgla3sinx=u\underbrace{J}_{a_1}\ddot{x}+\underbrace{b}_{a_2}\dot{x}\left | \dot{x} \right |+\underbrace{mgl}_{a_3}sinx=u

  • x~(t)=x(t)xd(t)\tilde{x}(t)= x(t)-x_d(t);选择中间变量s=x~˙+λx~=x˙x˙rs=\dot{\tilde{x}}+\lambda \tilde{x}=\dot{x}-\dot{x}_r,其中x˙r=x˙dλx~\dot{x}_r= \dot{x}_d-\lambda \tilde{x}。一般地,s=x(n)xr(n)s=x^{(n)}-x_r^{(n)}

  • y=[x¨r  x˙x˙  sinx]\boldsymbol{y}=[\ddot{x}_r ~~\dot{x}\left |\dot{x} \right |~~sinx ]

  • u=ya^ksu=\boldsymbol{y}\hat{\boldsymbol{a}}-ks,a^˙=PyTs\boldsymbol{\dot{\hat{a}}}= -\boldsymbol{P}\boldsymbol{y}^Ts

  • a~(t)=a^(t)a(t)\boldsymbol{\tilde{a}}(t)=\boldsymbol{\hat{a}(t)}-\boldsymbol{a}(t)

  • V=12Js2+12a~TP1a~V=\frac{1}{2}Js^2+\frac{1}{2}\boldsymbol{\tilde{a}}^T\boldsymbol{P}^{-1}\boldsymbol{\tilde{a}}

  • V˙=s(uya)=ks2+sya~+a^˙TP1a~=0=ks20\dot{V}=s(u-\boldsymbol{y}\boldsymbol{a}) =-ks^2+\underbrace{s\boldsymbol{y}\tilde{\boldsymbol{a}}+\boldsymbol{\dot{\hat{a}}}^T\boldsymbol{P}^{-1}\boldsymbol{\tilde{a}}}_{=0}=-ks^2 \leqslant 0

  • V˙0s0x~0,x~˙0\dot{V} \rightarrow 0 \Rightarrow s \rightarrow 0 \Rightarrow \tilde{x} \rightarrow0,\dot{ \tilde{x}} \rightarrow 0

  • Barbalat引理

    V bounded often to prove V¨\ddot{V}bounded

    验证V¨\ddot{V}bounded
    V¨=ddtV˙=2kss˙=2ks(x¨x¨r)\ddot{V}= \frac{\mathrm{d} }{\mathrm{d} t}\dot{V}=-2ks\cdot \dot{s}=-2ks(\ddot{x}-\ddot{x}_r)
    V bounded \Rightarrow s bounded and a^\boldsymbol{\hat{a}} bounded \Rightarrow x~\tilde{x} and x~˙\dot{\tilde{x}} bounded \Rightarrow xx and x˙\dot{x} bounded 故V¨\ddot{V}bounded

  • sufficiently, a^\hat{\boldsymbol{a}}收敛到aa \Leftrightarrow ydTyd0\boldsymbol{y}_d^T \boldsymbol{y}_d \geqslant 0 “average”

8.8 Robust Adaptive Control

系统

Ja1x¨+ba2x˙x˙+mgla3sinx=f(x,x˙,t)+u\underbrace{J}_{a_1}\ddot{x}+\underbrace{b}_{a_2}\dot{x}\left | \dot{x} \right |+\underbrace{mgl}_{a_3}sinx=f(x,\dot{x},t)+u


f^(x,t)f(x,t)F(x,t)\left | \hat{f}(\boldsymbol{x},t)-f(\boldsymbol{x},t) \right |\leqslant F(\boldsymbol{x},t),其中f^(x,t)\hat{f}(\boldsymbol{x},t)F(x,t)F(\boldsymbol{x},t)已知

want the system to behave after some transients as if a\boldsymbol{a} is known, as if we only had to be robust to F

定义变量sΔ=sΦsat(s/Φ)s_{\Delta} = s-\Phi sat(s/\Phi )

  • sΔΦsΔ=0\left | s_{\Delta} \right | \leqslant \Phi \Leftrightarrow s_{\Delta} = 0(tend to boundary layer)
  • ddtsΔ2=sΔs˙\frac{\mathrm{d} }{\mathrm{d} t}s_{\Delta}^2=s_{\Delta}\cdot \dot{s}

1

李雅普诺夫函数

V=12JsΔ2+12a~TP1a~V=\frac{1}{2}Js^2_{\Delta}+\frac{1}{2}\boldsymbol{\tilde{a}}^T\boldsymbol{P}^{-1}\boldsymbol{\tilde{a}}

求微分

V˙=sΔJs˙=sΔ(u+f(x,t)ya)(8.6)\dot{V}= s_{\Delta} \cdot J\dot{s}= s_{\Delta} (u+f(\boldsymbol{x},t)-\boldsymbol{y}\boldsymbol{a}) \tag{8.6}

若选择控制律u=ya^k sat(s/Φ)f^(x,t)Robust  Controlu= \boldsymbol{y}\boldsymbol{\hat{a}}-\underbrace{k~sat(s/\Phi )-\hat{f}(\boldsymbol{x},t)}_{Robust~~Control} a~(t)=a^(t)a(t)\boldsymbol{\tilde{a}}(t)=\boldsymbol{\hat{a}(t)}-\boldsymbol{a}(t)

V˙=sΔ(u+f(x,t)ya)=sΔ(k sat(s/Φ)+ya~+f(x,t)f^(x,t))+a^˙TP1a~\begin{align*} \dot{V}&=s_{\Delta} (u+f(\boldsymbol{x},t)-\boldsymbol{y}\boldsymbol{a}) \\ &=s_{\Delta}(-k~sat(s/\Phi) +\boldsymbol{y}\boldsymbol{\tilde{a}}+f(\boldsymbol{x},t)-\hat{f}(\boldsymbol{x},t))+\boldsymbol{\dot{\hat{a}}}^T\boldsymbol{P}^{-1}\boldsymbol{\tilde{a}}\tag{8.7} \end{align*}

因为sΔsat(s/Φ)=sΔsgn(s)=sΔs_{\Delta}sat(s/\Phi) =s_{\Delta}sgn(s)= \left | s_{\Delta} \right |,故

V˙=ksΔ+sΔya~+(f(x,t)f^(x,t))sΔ+a^˙TP1a~(8.8)\dot{V}= -k\left | s_{\Delta} \right |+s_{\Delta}\boldsymbol{y}\boldsymbol{\tilde{a}}+(f(\boldsymbol{x},t)-\hat{f}(\boldsymbol{x},t))s_{\Delta}+ \boldsymbol{\dot{\hat{a}}}^T\boldsymbol{P}^{-1}\boldsymbol{\tilde{a}} \tag{8.8}

根据式(8.5),取a^˙=PyTs\boldsymbol{\dot{\hat{a}}}= -\boldsymbol{P}\boldsymbol{y}^Ts,则sya~+a^˙TP1a~=(sy+a^˙TP1)a~=0s\boldsymbol{y}\tilde{\boldsymbol{a}}+\boldsymbol{\dot{\hat{a}}}^T\boldsymbol{P}^{-1}\boldsymbol{\tilde{a}}= (s\boldsymbol{y}+\boldsymbol{\dot{\hat{a}}}^T\boldsymbol{P}^{-1})\boldsymbol{\tilde{a}}=0,故

V˙=ksΔ+(ff^)sΔ(8.9)\dot{V}= -k\left | s_{\Delta} \right |+(f-\hat{f})s_{\Delta} \tag{8.9}

k=F+ηk=F+\eta,则

V˙=ksΔ+(ff^)sΔ=(F+η)sΔ+(ff^)sΔ\begin{align*} \dot{V}&= -k\left | s_{\Delta} \right |+(f-\hat{f})s_{\Delta} \\ &= -(F+\eta)\left | s_{\Delta} \right |+(f-\hat{f})s_{\Delta} \tag{8.10} \end{align*}

V˙ηsΔ0\dot{V}\leqslant -\eta \left | s_{\Delta} \right | \leqslant 0

根据Barbalat引理 V˙0sΔ0\dot{V} \rightarrow 0 \Rightarrow s_{\Delta} \rightarrow 0

拓展

系统

Ja1x¨+ba2x˙x˙+mgla3sinx=φ(x˙)+f(x,x˙,t)+u\underbrace{J}_{a_1}\ddot{x}+\underbrace{b}_{a_2}\dot{x}\left | \dot{x} \right |+\underbrace{mgl}_{a_3}sinx=\varphi (\dot{x})+f(x,\dot{x},t)+u

其中g^(x,t)g(x,t)Fg\left | \hat{g}(\boldsymbol{x},t)-g(\boldsymbol{x},t) \right |\leqslant F_g ,且φ(x˙)=infinityαiρi(x˙)\varphi (\dot{x})=\sum_{infinity}^{} \alpha_i \rho _i(\dot{x})

Desirable properties of the expansions

(i) At ant x˙\dot{x},only a few terms are needed for a reasonable approximation
so at any instance,only a finite “small” set of the \alpha_i is updated
(ii) infinity=finite N+residual\sum_{infinity}^{}=\sum_{finite~N}^{}+ residual(residual \searrow as N \nearrow)
(iii) orthonormal basis functons ρi(x˙)\rho _i(\dot{x})

ei ejdx˙=δij={1if  ei=ej0if  eiej\int e_i~e_jd\dot{x}=\delta_{ij}=\left\{\begin{matrix} 1 &if ~~e_i=e_j \\ 0& if~~e_i \neq e_j \end{matrix}\right.

infinityfinite N2=residualαi2\left \| \sum_{infinity}^{}-\sum_{finite~N}^{} \right \|^2=\left \|\sum_{residual}^{}\alpha_i^2 \right \|

参考

【1】Applied Nonlinear Control,Slotine and Li,Prentice-Hall 1991:Exercise 8.8 R6,R7
【2】https://www.bilibili.com/video/BV1Tk4y167kR?p=9&vd_source=b1a52fdb6c7481b4e8c78d03e9a9acb0